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Abstract  

One of the problems in data classification is imbalanced data. In two-class classification, 
imbalance problem occurs where one of the two classes has more samples than another class. 
In such situation, most of the classifier will be biased towards the major class, while the minor 
class will be subordinated eventually which leads to inaccurate classification. Therefore, a 
method to classify the imbalanced data is required. Rare Event Weighted Logistic Regression 
(RE-WLR) which is developed by Maalouf and Siddiqi is a method of classification applied 
to large imbalanced data and rare event. This study showed the review of RE-WLR for the 
classification of imbalanced data. It explicated the steps to obtain the estimator specifically, 
particularly for IRLS. RE-WLR is a combination of Logistic Regression (LR) rare events 
corrections and Truncated Regularized Iteratively Re-weighted Least Squares (TR-IRLS). 
Rare event correction in LR is applied to Weighted Logistic Regression (WLR). 
Regularization was added to reduce over-fitting. The estimation of ߚ is performed by using 
the method of maximum likelihood (ML), while WLR maximum likelihood estimates (MLE) 
were obtained by using IRLS method of Newton-Raphson algorithm. In order to solve large 
optimization problems, Truncated-Newton method is applied. 

Keywords:  two-class classification, imbalanced data, logistic regression, rare event, RE-
WLR 
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1. Introduction 

Data classification is an important process in the field of data mining. Classification is the processing 
of finding a set of models (or functions) which describe and distinguish data classes or concepts, for 
the purposes of being able to use the model to predict the class of objects whose class label is 
unknown [1]. The methods often used for classification are discriminant analysis and logistic 
regression. In addition, many classification methods are used by approach to programming, such as 
Artificial Neural Network (ANN), Naive Bayes, Adaptive Classification Regression Tree (CART) and 
Support Vector Machine (SVM). 

Linear Discriminant Analysis and Logistic Regression methods search for linear functions which are 
subsequently used for classification purposes. The use of linear functions enables better interpretation 
of the results by analyzing the value of the coefficients obtained. Not every classification method 
permits this type of analysis and, in fact, some are classified as ‘‘black box” models. Hence, Classic 
Discriminant Analysis and Logistic Regression continue to be interesting methodologies [2]. 

Linear classification is an extremely important machine-learning and data-mining tool. Compared to 
other classification techniques, such as the Kernel methods, which transform data into higher 
dimensional space, linear classifiers are implemented directly on data in their original space. The main 
advantage of linear classifiers is their efficient training and testing procedures, especially when 
implemented on large and high-dimensional data sets [3]. 

Besides discriminant analysis, logistic regression is a method of classification with linear classifiers 
that is often used. Logistic regression, which is a linear classifier, has been proven to be a powerful 
classifier by providing probabilities and by extending to multi-class classification problems [4,5]. 
Logistic regression has been extensively studied. Moreover, LR requires solving only unconstrained 
optimization problems. Hence, with the right algorithms, the computation time can be much less than 
that of other methods, such as Support Vector Machines (SVM), which require solving a constrained 
quadratic optimization problem [6]. 

One of the problems in data classification is the composition of the data that is out of balance 
(imbalanced data). In the binary or two-class classification, one class has a greater number of samples 
than the other class. The majority is negative class while the minority is positive class. The problem 
that occurs is a good prediction accuracy of the negative class and poor prediction accuracy for 
positive class. In other words, classifier tends to predict class which has more data composition. 

Problems of imbalanced data occur in various fields such as information retrieval and filtering [7], 
detection of oil spills from satellite imagery [8], medical diagnosis [9], text classification [10], credit 
card fraud detection [11], telecommunications [12], and others. 

Most of algorithm is more preoccupied in classifying major sample and ignoring or misclassifying 
minor sample. The minor samples are those that rarely occur but very important. There are various 
methods available for classification of imbalance data set which is divided into three main categories, 
the algorithmic approach, data preprocessing approach, and feature selection approach. Each of this 
technique has their own advantages and disadvantages [13]. 

Some Logistic Regression method development has been done to improve the accuracy of 
classification in imbalanced data. Maalouf and Trafalis [14] developed a method of Rare Event 
Weighted Kernel Logistic Regression (RE-WKLR) that is suitable for small to medium-sized data. 
Rahayu [15] developed a method of AdaBoost Newton Truncated Regularized Weighted Kernel 
Logistic Regression (AB-WKLR) and AdaBoost NTR Weighted Regularized Logistic Regression 
(AB-WLR) that significantly increase the performance of the accuracy and stability of general 
classifiers at NTR-KLR and NTR-LR , Furthermore, Maalouf and Siddiqi [6] developed a method of 
Rare Event Weighted Logistic Regression (RE-WLR) for the classification of imbalanced data on 
large-scale data. The study concluded that the RE-WLR has better performance than Truncated-
Regularized Iteratively Re-weighted Least Squares (TR-IRLS). Wang, Xu and Zhou [16] used Lasso-
Logistic Regression to evaluate unbalanced credit scoring.  
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This study showed the review of RE-WLR developed by Maalouf and Siddiqi [6] for the classification 
of imbalanced data. It mainly explicated the steps to obtain estimator specifically, particularly for 
IRLS. 

2. Logistic Regression 

Let X ߳ RNxd  be a data matrix where N is the number of instances (examples) and d is the number of 
features (parameters or attributes), and y be a binary outcomes vector. For every instance xi ߳ Rd (a 
row vector in X), where i = 1 . . .N, the outcome is either yi = 1 or yi = 0. Let the instances with 
outcomes of  yi = 1 belong to the positive class occurrence of an event), and the instances with 
outcomes yi = 0 belong to the negative class (non occurrence of an event). The goal is to classify the 
instance xi  as positive or negative. An instance can be treated as a Bernoulli trial with an expected 
value E(yi) or probability pi. The logistic function commonly used to model each instance xi with its 
expected outcome is given by the following formula [17]: 

,௜|࢞௜ݕሺܧ ሻࢼ ൌ ௜݌ ൌ
઺ܑܠ݁

1 ൅ eܑܠ઺
																																																																				ሺ1ሻ 

where β is the vector of parameters with the assumption that xi0 = 1 so that the intercept β0 is a constant 
term. From then on, the assumption is that the intercept is included in the vector β. 

The logistic (logit) transformation is the logarithm of the odds of the positive response and is defined 
as 

િܑ ൌ ݊ܫ ൬
௜݌

1 െ ௜݌
൰ ൌ  ሺ2ሻ																																																																				઺ܑܠ

In matrix form, the logit function is expressed as 

િ ൌ  ሺ3ሻ																																																																																								઺܆

 

3.  Regularized Logistic Regression 

There are two general methods of parameter estimation. They are least-squares estimation (LSE) and 
maximum likelihood estimation (MLE). This study uses Maximum Likelihood (ML). The ML method 
is based on the joint probability density of the observed data, and acts as a function of the unknown 
parameters in the model [18]. Recall that the outcome y is a Bernoulli random variable with mean ݌௜ in 
the LR model. Therefore we may interpret the expectation function as the probability that y = 1, or 
equivalently that xi belongs to the positive class. Thus we may compute the probability of the i-th 
experiment and outcome in the dataset X, y as 

ܲሺݔ௜, ሻߚ|௜ሻݕ ൌ ൜
,													௜݌ if	ݕ	 ൌ 	1
1 െ ,						௜݌ ݕ	݂݅ ൌ 0																																																			ሺ4ሻ 

ܲሺݔ௜, ሻߚ|௜ሻݕ ൌ ሺ݌௜ሻ௬೔ሺ1 െ  ሺ5ሻ																																																			௜ሻሺଵି௬೔ሻ݌

The likelihood function is 

ሻࢼሺܮ ൌෑሺ݌௜ሻ௬೔ሺ1 െ ௜ሻሺଵି௬೔ሻ݌
௡

௜ୀଵ

ൌිቆ
઺ܑܠ݁

1 ൅ ઺ܑܠ݁
ቇ
௬೔

൬
1

1 ൅ ઺ܑܠ݁
൰
ሺଵି௬೔ሻ

௡

௜ୀଵ

																			ሺ6ሻ 

and hence, the log-likelihood is then 

ሻࢼሺܮ	݊ܫ ൌ෍ቌݕ௜݊ܫ ቆ
઺ܑܠ݁

1 ൅ ઺ܑܠ݁
ቇ ൅ ሺ1 െ ݊ܫ௜ሻݕ ൬

1
1 ൅ ઺ܑܠ݁

൰ቍ

௡

௜ୀଵ

																																	ሺ7ሻ 
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There is no closed form solution to maximize ܮ݊ܫሺߚሻ with respect to	ߚ. Therefore, LR maximum 
likelihood estimates (MLE) are obtained using numerical optimization methods. One of the most 
commonly used numerical methods is the Newton-Raphson method, for which, both the gradient 
vector and the Hessian matrix are needed. The gradient vector is obtained from the first derivatives of 
the log likelihood and the Hessian matrix is the second derivatives. 

The first derivatives with respect to β are given by 

߲
௝ߚ߲

ሻࢼሺܮ݊ܫ	 ൌ෍ቌݕ௜ ൬
࢐࢏࢞

1 ൅ ઺ܑܠ݁
൰ ൅ ሺ1 െ ௜ሻݕ ቆ

െܑ࢞ܠ࢐݁࢏઺

1 ൅ ઺ܑܠ݁
ቇቍ

௡

௜ୀଵ

																																	ሺ8ሻ 

߲
௝ߚ߲

ሻߚሺܮ݊ܫ	 ൌ෍ቌݕ௜࢞࢐࢏ ൬
1

1 ൅ ઺ܑܠ݁
൰ െ ሺ1 െ ࢐࢏௜ሻ࢞ݕ ቆ

઺ܑܠ܍

1 ൅ ઺ܑܠ܍
ቇቍ

௡

௜ୀଵ

																						ሺ9ሻ 

߲
ߚ߲

ሻߚሺܮ݊ܫ	 ൌ෍൫ݕ௜࢞࢐࢏ሺ1 െ ௜ሻ݌ െ ሺ1 െ ௜൯݌	࢐࢏௜ሻ࢞ݕ

௡

௜ୀଵ

																																														ሺ10ሻ 

߲
ߚ߲

ሻߚሺܮ݊ܫ	 ൌ෍൫ݕ௜࢞࢐࢏ െ ௜݌	࢐࢏௜࢞ݕ െ ௜݌	࢐࢏࢞ ൅ ௜൯݌	࢐࢏௜࢞ݕ

௡

௜ୀଵ

																																							ሺ11ሻ 

߲
ߚ߲

ሻߚሺܮ݊ܫ	 ൌ෍ቀ࢞࢐࢏ሺݕ௜ െ ௜ሻቁ݌

௡

௜ୀଵ

																																																																															ሺ12ሻ 

where j = 0, ...d and d is the number of parameters. Each of the partial derivatives is then set to zero. In 
matrix form, equation (12) is written as 

ܡሺ܂܆ െ ሻܘ ൌ 0																																																																																				ሺ13ሻ 

Now, the second derivatives with respect to β are given by 

߲ଶ

௞ߚ௝߲ߚ߲
ሻࢼሺܮ݊ܫ	 ൌ෍ቆ

െܑ࢞ܠ࢑݁࢏࢐࢞࢏઺

ሺ1 ൅ ઺ሻሺ1ܑܠ݁ ൅ ઺ሻܑܠ݁
ቇ

௡

௜ୀଵ

																																																	ሺ14ሻ 

߲ଶ

௞ߚ௝߲ߚ߲
ሻߚሺܮ݊ܫ	 ൌ෍ቀെ࢞࢑࢏࢐࢞࢏൫	݌௜ሺ1 െ ௜ሻ൯ቁ݌

௡

௜ୀଵ

																																																	ሺ15ሻ 

If vi is defined as ݌௜ሺ1 െ  ௜ሻ and V = diag(v1, ...,vn) then the Hessian matrix is written as݌

۶ሺ઺ሻ ൌ
߲ଶ

߲ଶߚ
ሻࢼሺܮ݊ܫ	 ൌ െ܆܄܂܆																																																				ሺ16ሻ 

Over-fitting the training data may arise in LR [17], especially when the data are very high dimensional 
and/or sparse. One of the approaches to reduce over-fitting is through quadratic regularization, known 
also as ridge regression, which introduces a penalty for large values of β and to obtain better 
generalization [19]. The regularized log likelihood is defined as  

ሻࢼሺܮ݊ܫ ൌ෍ቌݕ௜݊ܫ ቆ
઺ܑܠ݁

1 ൅ ઺ܑܠ݁
ቇ ൅ ሺ1 െ ݊ܫ௜ሻݕ ൬

1
1 ൅ ઺ܑܠ݁

൰ቍ

௡

௜ୀଵ

െ
ߣ
2
 ሺ17ሻ																																										ଶ‖ߚ‖

ሻߚሺܮ݃݋ܮ ൌ෍൮ݕ௜ ቌ݊ܫ ቆ
઺ܑܠ݁

1 ൅ ઺ܑܠ݁
ቇ െ ݊ܫ ൬

1
1 ൅ ઺ܑܠ݁

൰ቍ ൅ ݊ܫ ൬
1

1 ൅ ઺ܑܠ݁
൰൲

݊

݅ൌ1

െ
ߣ
2
 ሺ18ሻ																2‖ߚ‖
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ሻߚሺܮ݃݋ܮ ൌ෍൬ݕ௜ ቀ݊ܫ൫ܑ݁ܠ઺൯ െ ൫1݊ܫ ൅ ઺൯ܑܠ݁ െ ݊ܫ 1 ൅ ൫1݊ܫ ൅ ઺൯ቁܑܠ݁ ൅ ݊ܫ 1 െ ൫1݊ܫ ൅ ઺൯൰ܑܠ݁

݊

݅ൌ1

െ
ߣ
2
 ሺ19ሻ																																																																																																																					2‖ߚ‖

ሻߚሺܮ݃݋ܮ ൌ෍ቀݕ௜൫݊ܫ൫ܑ݁ܠ઺൯ െ 0൯ ൅ 0 െ ൫1݊ܫ ൅ ઺൯ቁܑܠ݁

݊

݅ൌ1

െ
ߣ
2
 ሺ20ሻ																																				݃݋ܮ			2‖ߚ‖

ሻߚሺܮ݃݋ܮ ൌ෍ቀ݊ܫ൫ܑ݁ܠ઺൯
௬೔ െ ݈݊൫1 ൅ ઺൯ቁܑܠ݁
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݅ൌ1
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ߣ
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ሻߚሺܮ݃݋ܮ ൌ෍݊ܫቆ
݁௬೔ܑܠ઺

1 ൅ ఉ࢏࢞݁
ቇ

݊

݅ൌ1
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ߣ
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ሻߚሺܮ݃݋ܮ ൌ െ෍݊ܫ ቀ݁െܑܠ݅ݕ઺൫1 ൅ ઺൯ቁܑܠ݁

݊

݅ൌ1

െ
ߣ
2
 ሺ23ሻ																																																																							2‖ߚ‖

where the regularization (penalty) term 
ఒ

ଶ
  was added to formula (5). The objective is then to find	ଶ‖ߚ‖

the Maximum Likelihood Estimate (MLE), ߚመ , which maximizes the log likelihood. For binary outputs, 
the loss function or the deviance DEV is the negative log likelihood and is given by the formula  

መ൯ߚ൫ܸܧܦ ൌ െ	2In	Lሺβሻ																																																																					ሺ24ሻ 

 

4.  Iteratively Re-weighted Least Squares (IRLS) 

An alternative to numerically maximizing the LR maximum likelihood equations is the iteratively re-
weighted least squares (IRLS) technique. This technique uses the Newton-Raphson algorithm to solve 
the LR score equations. Each- iteration finds the weighted least squares (WLS) estimates for a given 
set of weights, which are used to construct a new set of weights [18]. The gradient and the Hessian are 
obtained by differentiating the regularized likelihood in (22) with respect to	ߚ. 

߲
ߚ߲

ሻࢼሺܮ݊ܫ	 ൌ ܡሺ܂܆ െ ሻܘ െ λ઺ ൌ 0																																																							ሺ25ሻ 

߲ଶ

߲ଶߚ
ሻࢼሺܮ݊ܫ	 ൌ െ܆܄܂܆ െ ۷ߣ ൌ 0																																																													ሺ26ሻ 

where I is a d ×d identity matrix. Now that the first and second derivatives are obtained, the Newton-
Raphson update formula on the (c+1)−th iteration is given by 

઺෡ሺ܋ା૚ሻ ൌ ઺෡ሺ܋ሻ ൅ ሺ܆܄܂܆ ൅ ܡሺ܂܆۷ሻି૚൫ߣ െ ሻܘ െ  ሺ27ሻ																																				β෠ሺୡሻ൯ߣ

Since  ઺෡ሺ܋ሻ ൌ ሺ܆܄܂܆ ൅ ૃ۷ሻି૚ሺ܆܄܂܆ ൅ ૃ۷ሻ઺෡ሺ܋ሻ , then (27) can be rewritten as 

઺෡ሺ܋ା૚ሻ ൌ ሺ܆܄܂܆ ൅ ܂܆۷ሻି૚ߣ ቀ܆܄઺෡ሺ܋ሻ ൅ ሺܡ െ  ሺ28ሻ																																				ሻቁܘ

ା૚ሻࢉመሺߚ ൌ ሺ܆܄܂܆ ൅  ሺ29ሻ																																																																		ሻ܋ሺܢ܄܂܆۷ሻି૚ߣ

where ܢሺ܋ሻ ൌ ሻ܋઺෡ሺ܆ ൅	ି܄૚ሺܡ െ  .ሻ and is referred to as the adjusted response [4]ܘ

If the matrix ሺ܆܄܂܆ ൅  were dense, the iterative computation could become unacceptably slow (۷ߣ
[20]. This necessitates the need for a “trade off” between convergence speed and accurate Newton 
direction [21]. The method which provides such a trade-off is known as the truncated Newton’s 
method. 
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4.1. Truncated Regularized Iteratively Re-weighted Least Squares (TR-IRLS) 

The weighted least squares (WLS) sub problem is then 

ሺ܆܄܂܆ ൅ ା૚ሻ܋۷ሻ઺෡ሺߣ ൌ  ሺ30ሻ																																																																														ሻ܋ሺܢ܄܂܆

is a linear system of d equations and variables, and solving it is equivalent to minimizing the quadratic 
function 

 
ଵ

ଶ
઺෡ሺ܋ା૚ሻሺ܆܄܂܆ ൅ ା૚ሻ܋۷ሻ઺෡ሺߣ െ ઺෡ሺ܋ା૚ሻܢ܄܂܆ሺ܋ሻ																																															ሺ31ሻ  

Komarek and Moore [22] used truncated-regularized iteratively-reweighted least squares (TR-IRLS) 
technique that implemented a modified linear Conjugate Gradient (CG) to approximate the Newton 
direction in solving the IRLS for LR. 

Conjugate gradient (CG) is an iterative minimization algorithm. The main advantage of the CG 
method is that it guarantees convergence in at most d steps [21]. The TR-IRLS algorithm consists of 
two loops. Algorithm 1 represents the outer loop finds the solution to the WLS problem and is 
terminated when the relative difference of deviance between two consecutive iterations is no larger 
than a specified threshold ߝଵ. Algorithm 2 represents the inner loop, which solves the WLS sub 
problems in Algorithm 1 through the linear CG method, which is the Newton direction. Algorithm 2 is 
terminated when the residual 

rሺ܋ା૚ሻ ൌ ሺ܆܄܂܆ ൅ λ۷ሻ઺෡ሺ܋ା૚ሻ െ  ሺ32ሻ																																									ሻ܋ሺܢ܄܂܆

is no greater than a specified threshold ߝଶ [6]. 

 

5.  Logistic Regression in Rare Events Data 

King and Zeng [23] recommend two methods of estimation for choice-based sampling, prior 
correction and weighting. This study uses weighting method.  

Under pure endogenous sampling, the conditioning is on X rather than y [24, 25], and the joint 
distribution of y and X in the sample is 

௦݂ሺ࢟, ሻࢼ|܆ ൌ ௦ܲሺࢄ|࢟, ሻࢼ ௦ܲሺ࢟ሻ																																																																									ሺ33ሻ 

where β is the unknown parameter to be estimated. Yet, since X is a matrix of exogenous variables, 
then the conditional probability of X in the sample is equal to that in the population, or ௦ܲሺࢄ|࢟, ሻߚ ൌ
ܲሺࢄ|࢟,  ሻ. However, the conditional probability in the population isߚ

ܲሺࢄ|࢟, ሻࢼ ൌ
݂ሺ࢟, ሻࢼ|܆

ܲሺ࢟ሻ
																																																																																			ሺ34ሻ 

but 

݂ሺ࢟, ሻࢼ|܆ ൌ ܲሺ࢟|ࢄ,  ሺ35ሻ																																																																									ሻࢄሻܲሺࢼ

and hence, substituting and rearranging yields 

௦݂ሺ࢟, ሻࢼ|܆ ൌ
௦ܲሺ࢟ሻ

ܲሺ࢟ሻ
ܲሺ࢟|ࢄ,  ሺ36ሻ																																																												ሻࢄሻܲሺࢼ

௦݂ሺ࢟, ሻߚ|܆ ൌ
ܪ
ܳ
ܲሺ࢟|ࢄ,  ሺ37ሻ																																																																			ሻࢄሻܲሺࢼ

where 
ு

ொ
ൌ

௉ೞሺ࢟ሻ

௉ሺ࢟ሻ
 , with H representing the proportions in the sample and Q the proportions in the 

population. The likelihood is then 
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ா௡ௗ௢௚௘௡௢௨௦ܮ ൌි
௜ܪ
ܳ௜
ܲሺ࢟࢏࢞|࢏, ሻ࢏ሻܲሺ࢞ࢼ

௡

௜ୀଵ

																																																			ሺ38ሻ 

where 
ு೔
ொ೔
ൌ ቀ

௬ത

த
ቁ ௜ݕ ൅ ቀ

ଵି௬ത

ଵିதത
ቁ ሺ1 െ  ത is the proportion of events in the sample and τ is theݕ ௜ሻ, withݕ

proportion of events in the population.  When dealing with REs and imbalanced data, the likelihood 
needs to be maximized.  

The log-likelihood for LR can then be rewritten as 

,ݕ|ߚሺܮ	݊ܫ ሻ܆ ൌ෍
ܳ௜
௜ܪ
,௜ݔ|௜ݕሺܲ	݊ܫ ሻߚ

௡

௜ୀଵ

																																																																									ሺ39ሻ 
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݁௬೔ܑܠ઺

1 ൅ ݁௫೔ఉ
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௡

௜ୀଵ
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݁௬೔ܑܠ઺

1 ൅ ઺ܑܠ݁
ቇ

௡

௜ୀଵ

																																																												ሺ41ሻ	

	

where ݓ௜ ൌ
ܳ݅
݅ܪ

 . If the proportion of events in the sample is more than that in the population, then the 

ratio 
ொ

ு
 is less than one, and hence the events are given less weight, while the non-events would be 

given more weight if their proportion in the sample is less than that in the population. The above 
estimator, however, is not fully efficient, because the information matrix equality does not hold. This 
is demonstrated as  

െE ൤
ܳ
ܪ
ఉ׏
ଶܲሺ࢟|ࢄ, ሻ൨ߚ ് E ൥ቆ

ܳ
ܪ
,ࢄ|ఉܲሺ࢟׏ ሻቇߚ ቆ

ܳ
ܪ
,ࢄ|ఉܲሺ࢟׏ ሻቇߚ

்

൩																				ሺ42ሻ 

and for the LR model it is 

െ൥
1
݊
	෍൬

ܳ௜
௜ܪ
൰

௡

௜ୀଵ

௜ሺ1݌ െ ࢐൩࢞࢏௜ሻ࢞݌ ് ൥
1
݊
෍൬

ܳ௜
௜ܪ
൰
ଶ௡

௜ୀଵ

௜ሺ1݌ െ  ሺ43ሻ																				࢐൩࢞࢏௜ሻ࢞݌

Let		࡭ ൌ
ଵ

௡
	∑ ቀ

ொ೔
ு೔
ቁ௡

௜ୀଵ ௜ሺ1݌ െ ࡮ and ,࢐࢞࢏௜ሻ࢞݌ ൌ
ଵ

௡
∑ ቀ

ொ೔
ு೔
ቁ
ଶ

௡
௜ୀଵ ௜ሺ1݌ െ  then the asymptotic ,࢐࢞࢏௜ሻ࢞݌

variance matrix of the estimator ߚ is given by the sandwich estimate, such that  ࢂሺߚሻ ൌ  ૚ି࡭࡮૚ି࡭
[26, 27, 28]. 

King and Zeng [23] extended the small-sample bias corrections, as described by McCullagh and 
Nelder [29] to include the weighted likelihood (41). According to McCullagh and Nelder [29], and 
later Cordeiro and McCullagh [30], the bias vector is given by 

bias൫β෠൯ ൌ ሺ܆܄܂܆ሻି૚܄܂܆ξ																																																																						ሺ44ሻ 

where  and Qii are the diagonal elements of ۿ ൌ  which is the approximate covariance ܂܆ሻି૚܆۲܂܆ሺ܆
matrix of the logistic link function. The second-order bias-corrected estimator is then 

઺෩ ൌ ઺෡ െ 	۰൫઺෡൯																																																																																						ሺ45ሻ 

As for the variance matrix V(ߚ෨) of ߚ෨, it is estimated using 

෩൯ࢼ൫܄ ൌ ቀ
݊

݊ ൅ ݀
ቁ
ଶ
 ሺ46ሻ																																																																												෡൯ࢼ൫܄	

Since ቀ
௡

௡ାௗ
ቁ
ଶ
< 1, then ܄൫ࢼ෩൯ < ܄൫ࢼ෡൯, and hence both the variance and the bias are now reduced. 



International Conference on Science, Technology and Humanity 2015 ISSN 2477-3328 

166 

6.  Rare Event Weighted Logistic Regression (RE-WLR) 

Now the formulation of the weighted LR suggested by King and Zeng [23] is applied to the WLR 
model in (41), the weighted likelihood can be rewritten as 

ሻߚ௪ሺܮ ൌෑሺ݌௜ሻ௪భ௬೔ሺ1 െ ௜ሻ௪బሺଵି௬೔ሻ݌

௡

௜ୀଵ

																																																																						ሺ47ሻ 

where ݓଵ ൌ
த

௬ത
଴ݓ  .  ൌ

ଵିத

ଵି௬ത
௜݌ ,  ൌ

ଵ

ଵା௘షȠ೔
 , and ሺ1 െ ௜ሻ݌ ൌ

௘షȠ೔

ଵା௘షȠ೔
 . 

Now, 

௜݌ ൌ ൬
1

1 ൅ ݁ିȠ೔
൰
௪భ

ൌ  ሺ48ሻ																																																																																								௜௪భ݌

and hence, 

௜ᇱ݌ ൌ
	௜݌߲
߲Ƞ௜

ൌ 	ଵݓ ൬
1

1 ൅ ݁ିȠ೔
൰
௪భିଵ

ሺെ1ሻ	൫1 ൅ ݁ିȠ೔൯
ିଶ
൫െ݁ିȠ೔൯																									ሺ49ሻ 

௜ᇱ݌ ൌ
	௜݌߲
߲Ƞ௜

ൌ 	ଵݓ ൬
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൰
௪భ
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൫݁ିȠ೔൯																							ሺ50ሻ 
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௪భ

ቆ
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ଶ
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1 ൅ ݁ିȠ೔

൰൱ ሺ55ሻ 

ൌ ௜௪భሺ1݌	ଵݓ െ ሺ1	ଵݓሻ	௜݌ െ ሻ	௜݌ ൅	ݓଵ	݌௜௪భሺ1 െ  ሺ56ሻ																																														ሻ	௜݌ሻሺെ	௜݌

ൌ ௜௪భሺ1݌	ଵݓ െ 	ଵݓሻሺ	௜݌ െ ሻ	௜݌	ଵݓ ൅	ݓଵ	݌௜௪భሺ1 െ  ሺ57ሻ																																											ሻ	௜݌ሻሺെ	௜݌

௜ᇱᇱ݌ ൌ ௜௪భሺ1݌	ଵݓ െ 	ଵݓሻሺ	௜݌ െ ሺ1 ൅  ሺ58ሻ																																																																																ሻ	௜݌ሻ	ଵݓ

 
Finally, the bias vector for WLR can now be rewritten as 

۰൫઺෡൯ ൌ ሺ܆۲܂܆ሻି૚۲܂܆ξ																																																																																										ሺ59ሻ 

where the i-th element of the vector ૆ is now 

௜ߦ ൌ 0,5ܳ௜௜	ሺሺ1 ൅ 	௜݌ሻ	ଵݓ െ  ሺ60ሻ																																																																																			ሻ	ଵݓ

with Qii as the diagonal elements of Q, which is now  ۿ ൌ and ۲ ,ࢀࢄሻି૚ࢄࡰࢀࢄሺ܆ ൌ ݀݅ܽ݃	ሺݒ௜	ݓ௜	ሻ for 
݅ ൌ 1…݊. The bias-corrected estimator becomes 

઺෩ ൌ ઺෡ െ 	۰൫઺෡൯																																																																																																													ሺ61ሻ 

Iteratively re-weighted least squares (IRLS) method is used to find the MLE of β, which uses Newton-
Raphson algorithm to solve LR score equations. Each iteration finds the weighted least squares (WLS) 
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estimates for a given set of weights, which are used to construct a new set of weights. For WLR, the 
gradient and Hessian are obtained by differentiating the regularized weighted log-likelihood, 

ሻࢼ௪ሺܮ	݊ܫ ൌ෍ݓ௜		݊ܫ	
݁௬೔ܑܠ઺

1 ൅ ઺ܑܠ݁
െ
ߣ
2
ଶ‖ߚ‖

௡

௜ୀଵ

																																										ሺ62ሻ 

with respect to β. In matrix form, the gradient is 
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where ࢃ ൌ ݀݅ܽ݃	ሺݓ௜	ሻ		and p is the probability vector. The Hessian with respect to β is then  
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The first and second derivatives are obtained, the Newton-Raphson methods iterates via 

઺෡ሺ܋ା૚ሻ ൌ ઺෡ሺ܋ሻ െ ሺ׏ఉ
ଶ݊ܫ	ܮ௪ሺߚሻሻି૚ ቀ׏ఉ݊ܫ	ܮ௪ሺߚሻቁ																																																		ሺ73ሻ 

઺෡ሺ܋ା૚ሻ ൌ ઺෡ሺ܋ሻ ൅ ሺ܆۲܂܆ ൅ λ۷ሻି૚൫܅܂܆ሺܡ െ ሻܘ െ λ઺෡ሺ܋ሻ൯																																				ሺ74ሻ 

Since  ઺෡ሺ܋ሻ ൌ ሺ܆۲܂܆ ൅ λ۷ሻି૚ሺ܆۲܂܆ ൅ λ۷ሻ઺෡ሺ܋ሻ , then (74) can be rewritten as 

઺෡ሺ܋ା૚ሻ ൌ ሺ܆۲܂܆ ൅ λ۷ሻି૚ሺ܆۲܂܆ ൅ λ۷ሻ઺෡ሺ܋ሻ ൅ ሺ܆۲܂܆ ൅ λ۷ሻି૚൫܅܂܆ሺܡ െ ሻܘ െ λ઺෡ሺ܋ሻ൯																			ሺ75ሻ 

઺෡ሺ܋ା૚ሻ ൌ ሺ܆۲܂܆ ൅ λ۷ሻି૚۲܂܆൫܆઺෡ሺ܋ሻ ൅ ሺ܂܆ሻି૚۲ି૚λ઺෡ሺ܋ሻ ൅ ۲ି૚܅ሺܡ െ ሻܘ െ ሺ܂܆ሻି૚۲ି૚λ઺෡ሺ܋ሻ൯ሺ76ሻ 

઺෡ሺ܋ା૚ሻ ൌ ሺ܆۲܂܆ ൅ λ۷ሻି૚۲܂܆ ቀ܆઺෡ሺ܋ሻ ൅ ۲ି૚܅ሺܡ െ  ሺ77ሻ																																																																								ሻቁܘ
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The Newton–Raphson update with respect to β on the (c+1) th iteration is 

β෠ሺୡାଵሻ ൌ ሺ܆۲܂܆ ൅ λ۷ሻି૚ܢ۲܂܆ሺ܋ሻ																																																																										ሺ78ሻ 

where ܢሺ܋ሻ ൌ ሻ܋઺෡ሺ܆ ൅	۲ି૚܅ሺܡ െ  .ሻ is the adjusted dependent variable or the adjusted responseܘ

The weighted least squares (WLS) sub problem is then 

ሺ܆۲܂܆ ൅ λ۷ሻ઺෡ሺ܋ା૚ሻ ൌ  ሺ79ሻ																																																																														ሻ܋ሺܢ۲܂܆

which is a system of linear equations with a matrix X, a vector of adjusted responses z, and a weight 
matrix D. Both the weights and the adjusted response vector are dependent on ࢼ෡ሺࢉሻ, which is the 
current estimate of the parameter vector. Specifying an initial estimate ࢼ෡ሺ૙ሻ	for ࢼ෡ can be solved 
iteratively, giving a sequence of estimates that converges to the MLE of ࢼ෡. This iterative process can 
be done using the CG method. Like the TR-IRLS algorithm, in order to avoid the long computations 
that the CG may suffer from, a limit can be placed on the number of CG iterations, thus creating an 
approximate or truncated Newton direction [6]. 

7.  Conclusion 

Rare Event Weighted Logistic Regression (RE-WLR) is a combination of LR rare events correction 
[23] and TR-IRLS [22]. Rare event correction in LR is applied by setting weighting to LR with the 
result that Weighted Logistic Regression (WLR) will be formed. Regularization was added to reduce 
over-fitting. The estimation of ߚ was performed by using the method of maximum likelihood (ML), 
but there was no closed form solution to maximize ܮ݊ܫሺߚሻ with respect to	ߚ. Therefore WLR 
maximum likelihood estimates (MLE) was obtained by using IRLS method of Newton-Raphson 
algorithm to solve WLR score equations. Each of iterations found the weighted least squares (WLS) 
estimating to give set of weights, which were used to construct a new set of weights. The gradient and 
the Hessian were obtained by differentiating the regularized weighted likelihood with respect to ߚ. In 
order to solve large optimization problems, Truncated-Newton method was applied. 
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