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Abstract  

The purpose of this study was to compare the performance of classical bivariate binary 
logistic regression and Bayesian bivariate binary logistic regression. The sizes of sample used 
in research were small and large sample. The size of the small sample was 200 and the large 
sample was 10000 samples. Parameter estimation method that often used in logistic 
regression modeling is maximum likelihood which is called the classical approach. However, 
using a maximum likelihood parameter estimation has several weaknesses. When the number 
of sample is small and the dependent variable is unbalanced, bias parameters are frequently 
obtained. Nevertheless, when the sample size is too large, it has propensity to reject H0. As 
the solution, the use of Bayesian approach to overcome the small sample size problem and 
unbalanced dependent variable is suggested. The case study carried out in this research was 
customer loyalty of 'X' Company. This study used two dependent variables, i.e. Customer 
Defections and Contract Answer. Initial information on the number of consumers who 
defected and not defected was unbalanced, likewise for the Contract Answers. Based on the 
comparison of classical and Bayesian bivariate binary logistic regression prediction, Bayesian 
method was evidenced to yield better performance compared to classical method. 
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1. Introduction 

Customer loyalty is an indicator of the performance of a given company. The factors related to the 
product can affect customer loyalty. Analysis and detection of customer loyalty is required to maintain 
the performance of a company. Detection of customer loyalty can be done by predicting customer 
loyalty based on the factors that influence it. The 'X' Company is an organization that provides 
antivirus products and operates by using internet connection system. The 'X' Company is currently 
working with contract system and completing customer loyalty issues. It is working with contract 
system and having customer loyalty issues. To obtain an overview of the company criteria on loyal 
customer, it is not possible to approach the customers directly. With this constraint, the company can 
use the available information. Based on available information, the criteria and prediction on 
customers’ loyalty can be figured out. 

Previous studies preoccupied on customer loyalty in the 'X' Company have been carried out by 
Kanamori, Martono, Ohwada, and Okada [1], Martono and Ohwada [2], and Martono [3]. The 
methods used in those studies were based on Machine Learning. Machine Learning method, however, 
failed to statistically interpret the relationships between the predictor variable and response variable. In 
addition, Asfihani [4] carried out a research by using binary logistic regression and Lorens method. 
The data used in the study was unbalanced dependent variable and the result obtained bias parameter. 
While Lorens method could not be interpreted statistically. 

Generally, the weakness of previous studies was on the indicator of customer loyalty which was 
Customer Defection. Five independent variables (predictors) were used in previous studies, i.e. 
Contract Answer, Accumulation of Renewal, Price of Product, Type of Costumer, and Status of Email 
Delivery. Ideally, to answer customer loyalty problems, Contract Answer should be used as a 
dependent variable (response). There is one-year relationship contract between the company and the 
customer. Regularly, the company sends notification of the auto-renewal update for each customer by 
e-mail in the period between fifty to zero days of product expiration. By receiving the e-mail 
notification, the options for the customer is to “opt-in” or “opt-out”. In the case the customer chooses 
to opt-in, it indicates positively that they would like to be contacted with a particular form, in this case 
with a renewal form. On the contrary, the preference of opt-out indicates that they would prefer not to 
be in, or in other words, it is a form of defection and customer can move to other products of the 
company. Thus, this study used two dependent variables, namely Customer Defections and Contract 
Answer. 

To improve the performance of the 'X' Company, information on the factors that affect customer 
loyalty is required. The relationship between Customer Defections and Contract Answer are 
interrelated. Initial information about the number of consumers who defected and not defected is 
unbalanced, likewise for the Contract Answers. Contract Answers variable is rare events in which the 
answer to continue the contract is considered to be very rare. 

Logistic regression is one of the models used for prediction or classification. This model can indicate 
factors that significantly influence the dependent variable. Binary logistic regression modeling is 
generally performed on the data with one dependent variable. According to McCullagh and Nelder [6] 
binary logistic regression model which has two interrelated dependent variables can be modeled into a 
model called bivariate binary logistic regression. The binary regression model is used to explain the 
probability of a binary response variable as a function of some covariates. According to Ali, Darda, 
Holmuist [7] bivariate logistic regression is a useful procedure with advantages that include individual 
modeling of the marginal probability distribution of the bivariate binary responses, and modeling the 
odds ratio describing the pairwise association between the two binary responses in relation to several 
covariates. 

Parameter estimation method often used in logistic regression modeling is maximum likelihood. This 
model is called the classical approach. However, using a maximum likelihood parameter estimation 
has some weaknesses. When the number of sample is small and the dependent variable is unbalanced, 
bias parameters are often obtained [8]. According to Schaefer [9] the small sample size is under 200 
samples. Meanwhile, when the sample size is large, it will tend to reject H0 [10]. Large sample size 
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tends to identify P-value as close to 0. Classical approach is frequently ineffective when the sample 
size is too large due to its ambiguous result. Dumouchel [11] suggests the use of Bayesian approach to 
overcome the small sample size problem and unbalanced dependent variable.  

Basically, the purpose of this research was to compare classical and Bayesian bivariate binary logistic 
regression prediction. This research involved small and large sample size. The sample size for the 
small sample was 200 samples and the large sample was 10000 samples. 

2. Methods 

2.1  Bivariate binary logistic regression model 

Bivariate binary logistic regression is a development of binary logistic regression. In the beginning, 
binary logistic regression modeling has only one dependent variable. Along the development of a 
binary logistic regression, the modeling could be done for more than one dependent variable. For two 
dependent variables, it was called bivariate. So, the binary logistic regression which has two 
interrelated dependent variables is called bivariate binary logistic regression [12]. Let define two 
binary dependent variables ( 1Y , 2Y ), which the variables 1Y  and 2Y  expressed an event 'success' or 
'failure', then the event can be modeled by bivariate binary logistic regression. 

Tab. 1 The probability for bivariate observation 

1Y                            

2Y  
0 1 Total 

0 
00p  01p  1- 1p  

1 
10p  11p  1p  

Total 1- 2p  2p  1 

In Table 1, rsp = P( 1 2,Y r Y s= = ), r, s = 0, 1 are the joint probabilities and P( 1)j jp Y= = , j =1, 2 is 
the marginal probabilities for each response variables. It is assumed that the observations within pairs 
are correlated but observations from different pairs are independent. When there are m independent 
variables 1 2, ,..., mx x x  then the value 1 2, ,..., mp p p  are: 
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1
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m m

m m
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x x

β β β
β β β
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=
+ + + +
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Bivariate binary logistic regression models can be expressed from logit 1( )p x and logit 2 ( )p x  which 

is a linear function of 1
T Xβ and 2

T Xβ , with 

[ ]1 01 11 21 1, , ,..., mβ β β β β=          (3) 

[ ]2 02 12 22 2, , ,..., mβ β β β β=          (4) 

[ ]0 1 2, , ,..., T
mX x x x x=          (5) 

ψ  is an odds ratio that shows the relationship between the variables 1Y  and 2Y , 
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ψ ψ
π π

= ≥      (6) 
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where 1Y  and 2Y  are independent ψ =1. The value of log is ψ = 𝜃𝜃, with T Xθ γ= , where γ is a bound 
parameter vector. The joint probabilities 11p  according to Dale [13] and Palmgren [14] can be 
obtained in terms of 1p , 2p , and ψ as  

( ) { }1 2

1 2

1 1 , 1
2

, 1

a a bψ ψ
ψ

π π ψ

− − − + ≠= 
 =

       (7) 

The other three joint probabilities can be recovered easily from the marginal 10 1 11p p p= − , 

01 2 11p p p= − , and 00 10 01 111p p p p= − − − . 

2.2 Parameter estimation using maximum likelihood method (classical bivariate binary logistic 
regression) 

Maximum likelihood method requires that parameters appraising must know the distribution of the 
model. The maximum likelihood method works by maximizing the likelihood function. If n random 
sample of observations are scaled on bivariate binary data, then the bivariate random variables 1( iY ,

2 )iY  i = 1, 2, 3,…,n will be identical with ( 11iY , 10iY , 01iY , 00iY ). They have multinomial distribution 
with probability 11ip , 10ip , 01ip , 00ip . So, the likelihood of a bivariate random variable is as follows: 

1
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( ) P( , , , )i i i i i i i i
i

L Y y Y y Y y Y y
=

= = = = =∏β  

11 10 01 00
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i i i i

n
y y y y

i i i i
i

p p p p
=

=∏            (8) 

The parameter    ( )= 1 2β , β ,θβ is obtained by maximizing the equation (8) by derive it to its parameters. 
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The first derivation of the equation (9) is used to estimate the β , 
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The second derivation of the equation (9) is used to estimate the standard deviation value of β . 
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Furthermore, from the second derivation of log-natural, the expected value is calculated. The 
expectation become elements of the Hessian matrix. The variance and covariance matrix estimation 
are obtained from the inverse matrix. 
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Given the parameter θ  contains the association which shows that 1Y  and 2Y  are dependent.  
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The completion of these parameters estimation can be done iteratively. Newton Raphson method is an 
iterative method that is often used in a logistic regression model [15]. So, the Newton Raphson 
iteration method will be used to obtain the parameters estimation of bivariate binary logistic 
regression. The next step is to test the significance of these parameters. The method used to test the 
significance of the parameters is likelihood ratio test. 

2.3 Parameter estimation using Bayesian method (Bayesian bivariate binary logistic regression) 

Bayesian methods have become popular in modern statistical analysis. The optimization process with 
the classical approach is generally done to obtain the parameter value that maximizes the likelihood 
function which is considered as a function of these parameters. In the complex case, the estimation 
process with the classical methods is commonly used in numerical optimization techniques to obtain a 
solution. While in the Bayesian approach, all unknown parameters are considered as random variables 
characterized by the parameter prior distribution. Unlike the classical approach, Bayesian methods do 
not involve the optimization process in the inference because Bayesian approach applies the Bayes 
theorem which is based on the joint posterior distribution of all parameters. Bayesian inference 
approach is done by using the posterior distribution of the parameters. Therefore, the main objective of 
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Bayesian method is to conduct the exploration of the posterior distribution. In the implementations, 
Bayesian methods are widely used for the analysis of complex statistical models [16]. 

( , | ) ( , | ) ( | ) ( | )( | , )
( | ) ( , | ) ( | ) ( | )

p p fp
p p u du f u u du

π
π

= = =
∫ ∫

Y Y YY
Y Y Y
β η β η β β ηβ η
η η η

   (17) 

Given the data 1 2, ,..., ny y y=Y  and a vector of unknown parameters β  usually in the form of 
probability distribution ( | )f Y β . It also suppose that β is a random quantity as well, having a prior 
distribution ( | )π β η , where η  is a vector of hyper-parameters. Inference concerning β is then based 
on its posterior distribution, given equation 17 [7]. The posterior distribution is obtained by 

( | , ) ( | ) ( | )p pπ∝Y Yβ η β η β,η              (18) 

Equation 18 is used in the main of Bayesian inference. Equation 18 shows that the posterior 
distribution is proportional to the multiplication of the prior and the likelihood of observation data. So 
that the posterior probability distribution consists all the information about the parameters. 

The estimation of the posterior distribution parameters through the integration process is often 
difficult to do if it involves a very complex integral equations. Therefore, the completion of the 
calculation of the parameter estimation are often done numerically by using Markov Chain Monte 
Carlo (MCMC). MCMC is done by generating the data with β  parameters using Gibbs Sampler. 
Parameters β  are considered as a random vector with a certain distribution and function of the 

estimated value (f β ) . Astutik, Iriawan, and Prastyo [17] has described the algorithm in the MCMC 
to obtain the posterior, which is as follows: 

i. Choose an initial value (0)β . 
ii. Generate samples (0)β , (1)β ,…, (Τ)β from the full conditional posterior distribution of 

( | , )p Yβ η . 
iii. Monitor convergence algorithm. If not convergent, it is necessary to generate more observations. 
iv. Remove the first B observations (sample burn-in). 
v. Note { (Β+1)β , (Β+ 2)β ,…, (Τ)β } as a sample for posterior analysis. 

vi. Plot the posterior distribution. 
vii. Get a conclusion from the posterior distribution (mean, median, etc.). 

According to Ali, Darda, and Holmuist [7], the proposed Bayesian bivariate binary logistic regression 
models can be written as, 

3
3
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log ,  for j = 1,2
1
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~ MVN(0,(Ix10 )),for j = 1, 2, 3

j j

j T
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β

β

β

X

X,

 

An approximated 100(1-𝛼𝛼) percent credible interval for the estimated parameters can be obtained from 
the percentiles of the posterior distribution. 

3. Materials and Methodology 

3.1  Data and Variables 

The data used in this study were derived from previous studies of Kanamori, Ohwada, Okada, and 
Prasasti [1], Kanamori, Martono, and Ohwada [2], and Martono [3], which had been preprocessed in 
advance. The original data of previous studies were obtained from the web of 'X' Company e-
commerce in 2007-2013. The sample size in the study was 10000 customers. 



International Conference on Science, Technology and Humanity 2015 ISSN 2477-3328 

212 

This study used two kinds of variable, i.e. Response and Predictor variable. There were two response 
variables in the study, i.e. Customer Defections and Contracts Answers. There were four predictor 
variables used in this study including: 

i. Accumulation of Renewal(X1) 
Accumulation of Renewal variable is an update accumulation for the purchase and renewal. 
Every time a consumer makes a purchase or renewal of the Update Accumulation will be 
recorded and increased 1. The data of Accumulation of Renewal variable was recorded from 0 to 
unlimited. 

ii. Price of Product (X2) 
Price of Product variable is the price of newly purchased products that range from 1886 to 
39000 Japanese Yen (JPY). 

iii. Type of Costumer (X3) 
Type of Costumer variable is the type of customers with 0 for individual and 1 for organization. 

iv. Status of Email Delivery (X4) 
The 'X' Company offers a contract extension by email. Status of Email Delivery variable is the 
delivery status of the email that is 1 if sent and 0 if not sent. 

v. Customer Defection (Y1) 
Customer Defection variable is a classification of consumers who value 1 if defected and 0 if 
consumers continued to use the products of one or more antivirus products of 'X' Company. 

vi. Contract Answer (Y2) 
Contract Answer is the consumer's choice to continue or terminate a contract with a value of 1 
for the 'opt-in' (to continue using certain products) and 0 to 'opt-out' (stop using certain 
products). 

3.2  Steps of Analysis 

The study used classical bivariate binary logistic regression and Bayesian modeling. The steps of 
analysis in the study were as follows: 

i. Splitting the data into training and testing data. The ratio of data was 90% for training data and 
10% for testing data. 

ii. Explicating the data 
iii. Modelling classical bivariate binary logistic regression and Bayesian. 
iv. Comparing the results of testing data prediction of both models. 
v. Formulating conclusions. 

4. Result and Discussion 

3.3  Statistics Descriptive 

Customer Defection, Contract Answer, Accumulation of Renewal, Price of Product, Type of 
Costumer, and Status of Email Delivery were the variables in this study. The characteristic of each 
variable is as follows. 

Tab. 2 Statistics descriptive of Renewal Accumulation and Product Price 

Variable Mean St.Dev Minimum Maximum 
Accumulation of Renewal 1.4073 1.5309 0 6 
Price of Product 6562.6 2292.7 1886 23500 

Tab. 1 illustrated the customers who have never done a renewal and maximum of renewal was 6. The 
highest price of the product was 23500 JPY and the lowest price of the product was 1886 JPY. 
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Fig. 1 Bar cart of Email Status and Costumer Type 

The numbers of costumer for an individual was 9518 and the numbers of costumer for an organization 
was 482.  About 3999 email was not sent to the costumers and 6001 email was sent to the costumers. 

 

 
Fig. 2 Bar cart of Contract Answer and Costumer Defection 

Contract Answer and Costumer Defection were the response variables. Fig. 2 showed that these 
variables were unbalanced. The proportion for costumer continues the contract was 0.008. It indicated 
that the variable of Contract Answer was unbalanced and rare event. The proportion for Costumer 
Defection was 0.6 and the proportion for non-defected was 0.4. 

3.4  Classical bivariate binary logistic regression and Bayesian modeling 

In this step, classical bivariate binary logistic regression and Bayesian modeling were applied in which 
90% of data was used for modeling while 10 % of data was for testing data. This study used both 
small and large sample size. The number of small sample size was 200 samples and the number of 
large sample size was 10000 samples.  

Tab. 2 Classical bivariate binary logistic regression and Bayesian modeling for a small sample size 

  Bayesian Estimates Using Gibbs Sampling Maximum Likelihood Estimates 

  
Customer 
Defection  

Contract 
Answer  Association 

Customer 
Defection  

Contract 
Answer  Association 

Constants 2.0250000* -17.8400000 -0.5719000 0.0035408 -0.1766200 -24.0340000 
Accumulation of Renewal  -0.5527000* 1.8150000* -2.0900000 -0.0039161 -0.2896100 1.4144000 
Price of Product 0.0000062 -0.0005852 0.8945000 0.0000497 0.0000063 0.0002382 
Type of Costumer  -0.1974000 -19.8900000 -0.0944400 0.0170110 -0.0773090 -9.5697000 
Status of Email Delivery  -1.3060000* 8.7690000 0.3139000 -0.0466380 -0.6392700 14.2700000 

Tab. 2 showed the results of classical bivariate binary logistic regression and Bayesian modeling for 
small sample size. Not all parameters from Bayesian and classical methods had significant effect on 
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the model. Using Bayesian method, the variables having significant effect on the model were 
Accumulation of Renewal and Status of Email Delivery. By using classical method, the value of 
likelihood ratio test was 64.03, with a degree of freedom of 126 (64.03 < 153.198). It indicated the 
parameters were insignificant. However, this study ignored the finding. 

Tab. 3 Classical bivariate binary logistic regression and Bayesian modeling for a large sample size 

  Bayesian Estimates Using Gibbs Sampling Maximum Likelihood Estimates 

  
Customer 
Defection  

Contract 
Answer  Association 

Customer 
Defection  

Contract 
Answer  Association 

Constants 1.788000* -5.436000* -0.889800 0.016283* -0.187610* -7.543600* 

Accumulation of Renewal  -0.437300* -0.008472 1.789000 -0.00469* -0.026430* 0.218830* 

Price of Product -0.000019 0.000020* -0.490900 0.000002* -0.000005* -0.000027* 

Type of Costumer  0.093940 -28.150000* 0.143500 -0.00431* 0.073196* -11.64000* 

Status of Email Delivery  -0.941400* 0.906000* -0.662900 -0.03529* -0.470500* 2.558600* 

Tab. 3 showed that all variables using large sample size were significant. The likelihood ratio test for 
classical method was 1560.49, with a degree of freedom of 738. Using α = 5%, it can be concluded 
that those parameters were significant (1560.49 > 802.310). It reaffirmed the findings of Lin, Lucas, 
and Shmuali [10] that larger sample size will tend to reject H0 (for classical method). 

3.5 Prediction results of classical bivariate binary logistic regression and Bayesian   

The next step was comparing the prediction results of classical and Bayesian bivariate binary logistic 
regression. Logically, the higher is the percentage of validity, the better is the model. By using logit 
function 1( )p x and 2 ( )p x , prediction of the model was obtained.  

Tab. 4 Classification of Customer Defection for a small sample size  

Method Observed 
Predicted Overall 

Percentage Data Customer 
Defection=0 

Customer 
Defection=1 

Percentage 
Correct 

Bayesian Customer Defection =0 41 35 53.947 
70.556* 

Training Customer Defection =1 18 86 82.692 

Classical Customer Defection =0 0 76 0 
57.778 

Customer Defection =1 0 104 100 

Bayesian Customer Defection =0 6 2 75 
90* 

Testing Customer Defection =1 0 12 100 

Classical Customer Defection =0 8 0 100 
40 

Customer Defection =1 12 0 0 

Tab. 5 Classification of Contract Answer for a small sample size  

Method Observed 
Predicted Overall 

Percentage Data Contract 
Answer=0 

Contract 
Answer=1 

Percentage 
Correct 

Bayesian Contract Answer=0 179 0 100 
99.444 

Training Contract Answer=1 1 0 0 

Classical Contract Answer=0 179 0 100 
99.444 

Contract Answer=1 1 0 0 

Bayesian Contract Answer=0 19 0 100 
95.000 

Testing Contract Answer=1 1 0 0 

Classical Contract Answer=0 19 0 100 
95.000 

Contract Answer=1 1 0 0 
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Tab. 6 Classification of Customer Defection for a larger sample size  

Method Observed 
Predicted Overall 

Percentage Data Customer 
Defection=0 

Customer 
Defection=1 

Percentage 
Correct 

Bayesian Customer Defection =0 1826 1774 50.722 
66.889* 

Training Customer Defection =1 1206 4194 77.667 

Classical Customer Defection =0 2678 922 74.389 
61.433 

Customer Defection =1 2549 2851 52.796 

Tab. 6 (Connection) 

Method Observed 
Predicted Overall 

Percentage Data Customer 
Defection=0 

Customer 
Defection=1 

Percentage 
Correct 

Bayesian Customer Defection =0 203 197 50.75 
69.200* 

Testing Customer Defection =1 111 489 81.5 

Classical Customer Defection =0 286 114 71.5 
61.433 

Customer Defection =1 272 328 54.667 

Tab. 7 Classification of Contract Answer for a larger sample size  

Method Observed 
Predicted Overall 

Percentage Data Contract 
Answer=0 

Contract 
Answer=1 

Percentage 
Correct 

Bayesian Contract Answer=0 8928 0 100 
99.200 

Training Contract Answer=1 72 0 0 

Classical Contract Answer=0 8928 0 100 
99.200 

Contract Answer=1 72 0 0 

Bayesian Contract Answer=0 992 0 100 
99.200 

Testing Contract Answer=1 8 0 0 

Classical Contract Answer=0 992 0 100 
99.200 

Contract Answer=1 8 0 0 

Based on Tab. 4 and Tab. 6, it was revealed that the appropriate method for classification of Customer 
Defection for small size sample and classification of Customer Defection for larger sample size is 
Bayesian method. This method had higher overall percentage than classical method. Tab. 5 and Tab. 7 
showed that both of methods had the same overall percentage. Both of Tables were the classification 
of Contract Answer for small and large sample size. The variable Contract Answer was a rare event, 
so these methods were too difficult to predict the particular case.  

5. Conclusion 

Based on the analysis and discussion, it can be concluded that the variables that affected Customer 
Defections and Contract Answer were Accumulation of Renewal, Price of Product, Type of Costumer, 
and Status of Email Delivery. These variables were significant evidenced by 10000 samples 
simulation in the model. The size of the sample used in the study affected the performance of the 
model. For the classical approach, larger sample size had propensity to reject H0. Based on the 
comparison of classical and Bayesian bivariate binary logistic regression, it can be concluded that 
Bayesian method indicated better performance compared to classical method. This result was similar 
to Gary, King, and Zeng [8] and Dumouchel [11] that the Bayesian method was better than classical 
method when the case has an unbalanced response. 
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